

Operating System

Encrypting File System for Windows 2000

Abstract

This document provides an executive summary and a technical overview of the encrypting file system
(EFS) that will be included with the Microsoft® Windows® operating system.

EFS provides the core file encryption technology to store Windows NT file system (NTFS) files
encrypted on disk. EFS particularly addresses security concerns raised by tools available on other
operating systems that allow users to access files from an NTFS volume without an access check.
With EFS, data in NTFS files is encrypted on disk. The encryption technology used is public key -based
and runs as an integrated system service making it easy to manage, difficult to attack, and transparent
to the user. If a user attempting to access an encrypted NTFS file has the private key to that file, the
user will be able to open the file and work with it transparently as a normal document. A user without
the private key to the file is simply denied access.

© 1998 Microsoft Corporation. All rights reserved.
The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

The BackOffice logo, Microsoft, MS-DOS, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.

Other product or company names mentioned herein may be the trademarks of their
respective owners.
Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

0699

INTRODUCTION ...1

EFS ENCRYPTION TECHNOLOGY..3
Where EFS Lives 3
User Interaction 3
Data Recovery 4

USING THE ENCRYPTING FILE SYSTEM6
User Operations 6

File/Folder Encryption 8
File or Directory Decryption 9

Recovery Operations 9
Encryption Recovery 10

Examples 10
Recommendations 15

EFS ARCHITECTURE ...16
Cryptography 16
Implementation 18
Policy Enforcement 19

Recovery Policy Enforcement 19
Certificate Validity Enforcement 20

Security Considerations 21
Application Programming Interfaces 22

EXPORT ISSUES WITH EFS ..26

SUMMARY...27

FOR MORE INFORMATION..28

CONTENTS

 Microsoft Windows 2000 Server White Paper 1

A standard safety measure on a personal computer system is to attempt to boot
from a floppy disk before trying to boot from the hard disk. This guards users
against hard drive failures and corrupted boot partitions. Unfortunately, it also adds
the convenience of booting different operating systems. This can mean someone
with physical access to a system can bypass the built-in security features of the
Microsoft® Windows NT® file system access control by using a tool to read
Windows NT file system (NTFS) on-disk structures. Many hardware configurations
provide features like a boot password to restrict this kind of access. Such features
are not in widespread use, and in a typical environment, where multiple users are
sharing a workstation they don’t work very well. Even if these features were
universal, the protection provided by a password is not very strong. Additionally, the
hard disk can be removed from a secure computer and then plugged into a
computer where the perpetrator has sufficient access.

Typical scenarios where unauthorized data access becomes an issue include:

A stolen laptop. It only takes a moment for someone to pick up an unattended
laptop. What if the thief is not interested in reselling your computer, but is interested
in the sensitive information stored on its hard drive?

Unrestricted access. Office desktop systems are left unattended and anyone can
come in and quickly steal information from an unattended computer.

The root of these security concerns is sensitive information, which typically exists
as unprotected files on your hard drive. You can restrict access to sensitive
information stored on an NTFS partition if Windows NT is the only operating system
that can be run and if the hard drive cannot be physically removed. If someone
really wants to get at the information, it is not difficult if they can gain physical
access to the computer or hard drive. Availability of tools that allow access to NTFS
files from MS-DOS® and UNIX operating systems makes bypassing NTFS security
even easier.

Data encryption is the only solution to this problem. There are a number of products
on the market that provide application-level file encryption using password-derived
keys. However, there are some limitations with most of these approaches:

Manual encryption and decryption on each use. Encryption services are not
transparent to the user in most products. The user has to decrypt the file before
every use and re-encrypt it when finished. If the user forgets to encrypt a file, the file
is unprotected. And, because the user must go to the trouble of specifying that a file
be encrypted (and decrypted) on each use, it discourages the use of encryption.

Leaks from temporary and paging files. Many applications create temporary files
while a user edits a document (Microsoft Word for one). These temporary files are
left unencrypted on the disk, even though the original document is encrypted,
making data theft easy. And, application level encryption runs in Windows NT user
mode. This means that the user’s encryption key may be stored in a paging file. It is
fairly easy to gain access to all documents encrypted using a single key by simply
mining a paging file.

INTRODUCTION

Microsoft Windows 2000 Server White Paper 2

Weak security. Keys are derived from passwords or pass-phrases. Dictionary
attacks can easily breach this kind of security if easy to remember passwords are
used. Forcing more complicated passwords makes for more complicated usability.

No data recovery. Many products do not provide data recovery services. This is
another discouragement to users, especially ones who do not want to remember
another password. In the cases where password-based data recovery is provided, it
creates another weak point of access. All a data thief needs is the password to the
recovery mechanism to gain access to all encrypted files.

EFS addresses all the problems mentioned above and more. The following four
sections go into detail on the encryption technology, where encryption takes place
in the system, user interaction, and data recovery.

 Microsoft Windows 2000 Server White Paper 3

EFS is based on public-key encryption, taking advantage of the CryptoAPI
architecture in Windows. Each file is encrypted using a randomly generated key,
called the file encryption key, which is independent of a user’s public/private key
pair; thereby stifling many forms of cryptanalysis-based attack on the encrypted
files.

File encryption can use any symmetric encryption algorithm. The first release of
EFS will expose DESX as the encryption algorithm. Future releases will allow
alternate encryption schemes.

EFS also supports encryption and decryption on files stored on remote file servers.
Note: in this case EFS only addresses encrypting data on disk. It does not encrypt
data that is transferred over the network. Windows 2000 provides network protocols
such as SSL and IPSEC to encrypt data over the network.

Where EFS Lives
EFS is tightly integrated with NTFS. When temporary files are created, the attributes
from the original file may be copied to temporary files as long as all files are on
NTFS volume. If the original file is encrypted, EFS encrypts its temporary copies
when attributes are transferred during file creation. EFS resides in the
Windows 2000 kernel and uses the non-paged pool to store file encryption keys,
ensuring that they never make it to the paging file.

User Interaction
The default configuration of EFS allows users to start encrypting files with no
administrative effort. EFS automatically generates a public-key pair and gets the
public key certified by a configured Certificate Authority (CA); or self-signs it—if
there is no CA available to issue certificates.

File encryption and decryption is supported on a per file or entire directory basis.
Directory encryption is transparently enforced. All files (and subdirectories) created
in a directory marked for encryption are automatically encrypted. Each file has a
unique encryption key, making it safe for rename operations. If you rename a file
from an encrypted directory to an unencrypted directory on the same volume, the
file remains encrypted. Encryption and decryption services are available from
Windows Explorer. Additionally, command line tools and administrative interfaces
are provided for advanced users and recovery agents so they can take full
advantage of this capability.

A file need not be decrypted before useencryption and decryption is done
transparently when bytes travel to and from the disk. EFS will automatically detect
an encrypted file and locate a user’s certificate and associated private key in user’s
certificate and key stores. Since the mechanism of key storage is based on
CryptoAPI, users will have the flexibility of storing keys on secure devices, such as
smart cards.

The initial release of EFS will not expose file sharing from the user interfaces;

EFS ENCRYPTION
TECHNOLOGY

Microsoft Windows 2000 Server White Paper 4

however, the APIs will expose the capability for future applications to leverage the
capability. EFS is designed to allow file sharing between any number of people by
the simple use of their public keys. Users can then independently decrypt files using
their own private keys. Users can be easily added (if they have a configured public
key certificate and associated private key) or removed from a group of permitted
sharers.

The reason for not exposing file sharing to end users in the initial release of
Windows 2000 is existing applications currently may perform operations, such as
copying files, which may inadvertently cause sharing information to be lost thereby
creating a usability problem. The reason for not exposing file encryption is similar—
most applications can leave files unencrypted after editing is done on them. These
features will be become available for end-users when applications developers are
more aware of file encryption.

Data Recovery
EFS also provides built-in data recovery support. The Windows 2000 security
infrastructure enforces the configuration of data recovery keys. You can use file
encryption only if the system is configured with one or more recovery keys. EFS
allows recovery agents to configure public key certificates that are used to enable
file recovery. Only the file’s randomly generated encryption key is available
using the recovery key, not a user’s private key. This ensures that no other
private information is revealed to the recovery agent accidentally—only the
data that falls in the scope of influence of a recovery agent is recoverable by
the agent.

Data recovery is intended for most business environments where the organization
expects to be able to recover data encrypted by an employee after an employee
leaves or when encryption keys are lost. The recovery policy can be defined at the
domain controller of a Windows 2000 domain. Like most other policies in
Windows 2000, the policy defining Encrypted Data Recovery Agents is configured
as part of Group Policy Objects (GPOs). These GPOs can then be assigned at
different scopes —Domain or Organizational Units. The policy defined at the closest
scope to a given computer takes effect on that computer. There is no accumulation
of Encrypted Data Recovery Agents Policy—therefore if there are multiple policies
configured at different scopes, then the policy applied last gets enforced. To
understand how group policies work, see the technical White Papers and other
information on Group Policy and Windows Administration available from
www.microsoft.com. For information on security policies, refer to the technical White
Paper Security Configuration Tool Set, also available from www.microsoft.com.

By default, recovery policy is under the control of domain administrators. To reduce
any need for administration, EFS automatically configures a default recovery policy
making the domain administrator account the recovery agent for the domain. The
certificate used may be a self-signed one if there is no Certificate Authority
available. Domain administrators can delegate this to designated data security

 Microsoft Windows 2000 Server White Paper 5

administrator accounts using Windows 2000 Directory Service delegation features.
This provides better control and flexibility on who is authorized to recover encrypted
data. EFS also supports multiple recovery agents, by allowing for multiple recovery
key configurations to provide organizations with redundancy and flexibility in
implementing their recovery procedures. You can also leverage the scope-based
enforcement of Group Policy to have different recovery agents for different parts of
your organization. For example, the recovery agent(s) for company executives may
be different from rest of the employees.

EFS can also be used in small office or home office environments. EFS will
automatically generate a recovery key, issue a self-signed certificate to the local
administrator account on first logon and save it in the administrator’s certificate
store just as is the case for default policy in the domain. This makes the local
administrator the default recovery agent on stand-alone workstation/servers
allowing the local administrator to recover any encrypted file on the system. Note
that this is only the default policy. Users may change this to suit their requirements.

Microsoft Windows 2000 Server White Paper 6

The following sections provide user scenarios that demonstrate how EFS works.

User Operations
The following figure shows the Windows Explorer folder property page that displays
encryption services and the dialog box generated by selecting Advanced on
General tab.

This figure shows the dialog box that appears when the encryption checkbox is
modified on the folder and Apply or OK is selected on the property page.

Selecting the Advanced button on the folder property page exposes the following
EFS features to the user:

Encryption—Selecting the Encrypt contents to secure data check box allows the
user to encrypt the currently selected folder. Additionally, the user can encrypt all
files (and subdirectories) in the directory.

USING THE
ENCRYPTING FILE
SYSTEM

 Microsoft Windows 2000 Server White Paper 7

Decryption—This option is converse to encryption Clearing the Encrypt contents
to secure data box allows the user to decrypt the currently selected folder. It also
lets users decrypt all files and sub-folders in the directory, in addition to resetting the
directory as unencrypted.

NOTE: Encryption, decryption operations are NOT exposed on individual files from
the graphical user interface. This is to encourage users to turn encryption on at the
folder level rather than on individual files. The reason being that different file-based
applications manipulate files in a variety of ways and can inadvertently leave files in
plaintext on modifications. To protect the users’ sensitive data, encryption is
exposed at folder level for this release—this ensures all files created in the folder
(including temporary files) are encrypted. Once more applications become
encryption aware, file level feature will be exposed.

In addition to the graphical interface, Windows 2000 includes a command line tool
for richer functionality needed for administrative operations. The command line tool
is:

Cipher command line utility—This provides the ability to encrypt and decrypt files
and folders from a command prompt.

Examples:

• To encrypt the C: \My Documents directory, the user types:

C:\>cipher /e My Documents

• To encrypt all files with “cnfdl” in the name, the user types:

C:\>cipher /e /s *cnfdl*

The complete cipher command supports the following options:

D:\>cipher /?

Displays or alters the encryption of files on NTFS partitions.

 CIPHER [/E | /D] [/S:dir] [/P:keyfile] [/K:keyfile] [/L:keyfile] [/I] [/F] [/Q] [filename
[...]]

 /E Encrypts the specified files. Directories will be marked so that files added
afterward will be encrypted.

 /D Decrypts the specified files. Directories will be marked so that files added
afterward will not be encrypted.

 /S Performs the specified operation on files in the given directory and all
subdirectories.

 /I Continues performing the specified operation even after errors have occurred.
By default, CIPHER stops when an error is encountered.

 /F Forces the encryption operation on all specified files, even those which are
already encrypted. Already-encrypted files are skipped by default.

Microsoft Windows 2000 Server White Paper 8

 /Q Reports only the most essential information.

 Used without parameters, CIPHER displays the encryption state of the current
directory and any files it contains. You may use multiple filenames and wildcards. You
must put spaces between multiple parameters.

File/Folder Encryption
All that the user needs to do is select one or more folders and select the encryption
check box on the folder properties advanced attributes dialog box. Windows
Explorer will call EFS to encrypt the selected folders and provide the user a pop-up
option to encrypt all existing files and any subfolders in the selected folders.
Marking a folder encrypted will ensure that all future files in that folder are encrypted
by default and all future subfolders under it are marked encrypted. The folder’s list
of files is not encrypted and you can enumerate files as usual, provided you have
sufficient access to the folder. Folder encryption provides users the ability to
manage their sensitive files by simply copying them to encrypted folders.

Once a file is encrypted, it is stored encrypted on the disk. All reads and writes to
the file are decrypted and encrypted transparently. To find out if the file is
encrypted, users can check the properties on the file to see if the check box is
selected. The list view on Windows Explorer can also be extended to see the
attributes —“E” in the attributes column indicates the file is encrypted. Since the
encryption is transparent, the user can use the file as before. For example, the user
can still open the Word document and edit it as before or open a text file using
Notepad and do the same. Any other user trying to open this encrypted file will get
an access denied error as the user will not posses a key to decrypt the file.

It is important to note that users (administrators, in this case) should not encrypt
files in the system directory. This is because these files are needed for the system
to boot. During the boot process, a user's private key is not available to decrypt the
files. Such an operation can render the system useless. EFS will safeguard this by
failing encryption attempts on files with the system attribute. Future releases of
Windows will provide secure boot capabilities that will support encryption of system
files.

EFS also provides users the ability to transfer encrypted files across systems. This
is achieved through standard backup and restore mechanisms. All that the user
needs to do is back up the encrypted file to removable media using a backup tool.
The backed up file is still encrypted. The user can then copy this file backup to
different file systems including FAT, backup tapes, or send it as an e-mail
attachment like a normal file. To be able to use the file on a system where it is
copied to, the user restores the file on an NTFS volume (Note: Windows 2000 only)
and the restored file is created as an encrypted file.

Simply copying the file to a non-NTFS version 5.0 volume will make a copy in
plaintext. This is because the normal copy command uses file reads which are
transparently decrypted by EFS. This can be used to create plaintext copies of an
encrypted file for distribution. If the copy is saved to a NTFS version 5.0 volume, the

 Microsoft Windows 2000 Server White Paper 9

copy will end up being encrypted. If it is saved on the same system as the original,
the encryption will be identical to the original. However, if the copy is on a remote
system, the file will be encrypted but will not be identical to the original—this is
because the file encryption key can not be exported across the wire securely and
hence the remote copy will be encrypted with a new FEK.

File or Directory Decryption
Users will not need to decrypt files or directories for normal operations because
EFS provides transparent encryption and decryption during data writes and reads.
Such operations may however be required under special circumstances where a
user needs to share an encrypted file with other users (sharing of encrypted files is
not available in this release).

Users can decrypt files and mark directories unencrypted using the Windows
Explorer—encryption check box on the folder property page. The operation is
similar to encryption. Performing this operation on one or more folders will cause
EFS to decrypt the all files and sub-folders under the selected folder and mark each
of them as unencrypted.

Recovery Operations
EFS recovery policy is implemented as part of the overall security policy for the
system. It may be configured in Group Policy Objects at the domain level or
organizational units in the Active Directory, such that it applies to all Windows 2000-
based computers within the defined scope, or it may be configured locally on the
computer. The user interface is integrated with Security Settings extension snap-in
to Group Policy Editor. The node is called “Encrypted Data Recovery Agents” and
appears under Public Key Policies area.

This interface allows administrators to define “no recovery policy”, an “empty”
recovery policy or a recovery policy with a one or more X509 version 3 certificates
belonging to individuals identified as recovery agents for that scope of
administration (domain, organizational unit or the computer). The following menu
options allow you to add existing certificates or create new ones.

Microsoft Windows 2000 Server White Paper 10

NOTE: Setting up an “empty policy” will turn EFS off, thereby not allowing users to
encrypt files on computers that fall in that category. Setting up “no policy” (deleting
policy) will allow the default local policy on computers to be used, in effect allowing
local administrators to control the recovery of data on their individual computers.

Integrating the recovery policy with a system security policy provides a coherent
security enforcement model. The Windows 2000 security subsystem takes care of
enforcing, replicating, caching and updating the recovery policy. Therefore, users
are able to use file encryption on a temporarily offline system, such as a laptop,
much like they are able to logon to their domain account using cached credentials.

Encryption Recovery
EFS requires that a data recovery policy be set up at a domain or OU level (or even
locally) before EFS can be used. The recovery policy is set up by domain
administrators (or by delegated personnel known as recovery agents) that control
the recovery keys for all machines in the scope of influence for the policy.

If a user loses a private key, a file protected by that key can be recovered by
backing up the file and sending it in e-mail to one of the recovery agents. The
recovery agent will restore the encrypted file on a secure machine with the private
recovery keys and then simply decrypt the file using cipher command line or
Windows Explorer. The recovery agent then returns the plaintext file back to the
user. Alternatively, the recovery agent can go to the mac hine with the encrypted file
and load their recovery certificate and private key and perform the recovery on the
machine. The latter may not be safe and is not recommended as a general method
because of the sensitivity of the recovery key which should not be left on an
unsecured machine.

In a small business environment or home environment where there are no domains,
recovery can be done on the stand-alone computer itself using the local
administrator account, which is configured as the default recovery agent.

Examples
To understand the usage of this technology better, let‘s walk through some
examples.

 Microsoft Windows 2000 Server White Paper 11

Example 1: Encrypt a folder on local machine
The steps are:

• Right-click on the selected folder to bring up Properties.
• Click Advanced on the General tab.

• Select Encrypt contents to secure data.

• Click OK to close the dialog box.
• Click OK to apply and close the property page.
• A dialog box will prompt you to encrypt the folder only or all existing content.

Microsoft Windows 2000 Server White Paper 12

• Choose to encrypt the folder and all existing content (files and subfolders).
• Click OK. You can confirm that encryption happened by verifying the state of

the attribute checkbox.

Example 2: Encrypt a folder on a remote machine
The steps are:

• Use the Tools menu in Windows Explorer to map a network share on the
remote machine as a drive.

• Once mapped, you can navigate to the folder as in the local case above.
• Follow the steps in previous example to perform the operation.
• Note that if the remote volume is not NTFS version 5, this operation will not be

allowed.

NOTE: If the remote machine is a “trusted server” (trusted for delegation), EFS will
be able to use the key from user’s roaming profile so that same key is used across
systems. If the remote machine is not “trusted”, then a local profile is created on the
machine and key is local to that machine and can be used on that machine only.
Thus moving these files between machines would require you to move your keys
also.

Example 3: Decrypt a folder
The steps are:

• Right-click on the selected folder to bring up Properties.
• Click Advanced on the General Tab.
• Click to clear the Encrypt contents to secure data check box.
• Click OK to close the dialog box.
• Click OK to apply and close the property page.
• A dialog will prompt you to decrypt the folder only or all existing content.
• Choose to decrypt the folder and all existing content (files and subfolders).
• Click OK. You can confirm that decryption happened by verifying the state of

the attribute checkbox.

 Microsoft Windows 2000 Server White Paper 13

Example 4: Copy entire encrypted folder

The steps are:

• Select the folder in Windows Explorer.
• Right-click and select Copy
• Open the folder where you want to place the copy.
• Right-click and select Paste.
• The destination folder and contents will remain encrypted.

Example 5: Backup an encrypted folder
The steps are:

• Start Backup (StartàProgramsàAccessoriesàBackup).
• Use the browser to locate and check the folder you want to back up.

• Select the backup file (.e.g. ENCRYPTED.BKF) where you want to back up the
entire folder.

Microsoft Windows 2000 Server White Paper 14

• Click Start Backup. Click Backup on the pop-up dialog box so the process
continues.

• This will back up the entire encrypted folder to the backup file (e.g.
ENCRYPTEDFILES.BKF).

• This file can be copied to removable media like floppy disks and will be secure
because it will remain encrypted.

Example 6: Restore an encrypted folder

The steps are:

• Start Backup (StartàRunàBackup).
• Right-click File and select Catalog file.

• Enter the path to the backup file (for example ENCRYPTEDFILES.BKF)
• Select the encrypted folder that needs to be restored. All its contents are

restored automatically.

 Microsoft Windows 2000 Server White Paper 15

• Choose to restore files to Alternate location.

• Create or designate the folder under which you want the encrypted folder to be
restored.

• Click Start Restore.
• On the dialog box, click OK to confirm.
• Click OK to confirm the backup file.
• The restore progress dialog box will show you the progress of the encrypted

folder and its files being restored. You can check the folder Properties to
confirm that indeed it was restored encrypted.

Example 7: Recover an encrypted folder

The steps are:

• You will back up the folder using Example 5 above.
• You will send the backup file as a mail attachment to your Recovery Agent.
• Recovery Agent will restore the folder using Example 6 above on the machine

where the recovery keys are kept.
• Recovery Agent will then use Windows Explorer to simply decrypt the folder by

clearing the Encrypt contents to secure data check box. A dialog box will
confirm if the operation has to be performed on just the folders, but any
subfolders as well or not.

• Once the enti re folder has been decrypted, Recovery Agent can use the back
up folder steps in Example 5 to create a backup file and return it back to the
user.

Recommendations
Encryption is a sensitive operation. It is important that encrypted data does become
unencrypted inadvertently. To this end, we recommend the following:

• Encrypt the My Documents folder (%UserProfile% \My Documents)—this
ensures that most Office documents will be encrypted by default.

• Always encrypt folders rather than individual files. Windows Explorer only
allows folder-based encryption, however CIPHER.EXE will let you encrypt
individual files. Applications work on files in various ways, for example creating
temporary files in the same folder as the original during editing—encrypting at
folder level ensures that files don’t get decrypted transparently.

• The private keys associated with recovery certificates are extremely sensitive.
Never leave them unsecured. Either generate them on a computer that is
physically secured or export the key and certificate into a .pfx file, protected
under a strong password and secure that file on a floppy disk.

Microsoft Windows 2000 Server White Paper 16

This section provides a brief technical and architectural overview of EFS.

Cryptography
EFS implements data encryption and decryption using a public key -based scheme.
File data is encrypted using a fast symmetric algorithm with a file encryption key
(FEK). The FEK is a randomly generated key of a certain length required by the
algorithm or by law if the algorithm supports variable length keys. Export issues
relating to EFS are discussed below in this document.

The FEK is encrypted using one or more key encryption public keys to generate a
list of encrypted FEKs. The public portion of a user's key pair is used to encrypt
FEKs. This public portion of the user’s key pair is obtained from the User’s X509
version 3 certificate, with enhanced key usage as “File Encryption”. The list of
encrypted FEKs is stored along with this encrypted file in a special EFS attribute
called the Data Decryption Field (DDF). The file encryption information is tightly
bound to the file. The private portion of the user’s key pair is used during decryption.
The FEK is decrypted using the private portion of the key pair. The private portion of
a user’s key pair is stored safely elsewhere in smart cards or other secure storage
such as the integrated software-based protected store used by CryptoAPI.

NOTE: A user’s key encryption can also be done using a symmetric algorithm such
as a password-derived key. EFS does not support this because password-based
schemes are inherently weak due to their susceptibility to dictionary attacks.

The FEK is also encrypted using one or more recovery key encryption public keys
(obtained from the recovery agent X509 version 3 certificates stored in the
Encrypted Data Recovery Agent (EDRA) Policy for the computer—the enhanced
key usage for these certificates must be “File Recovery”). Again, the public portion
of each key pair is used to encrypt FEKs. This list of encrypted FEKs is also stored
along with the file in a special EFS attribute called the Data Recovery Field (DRF).
Only public portions of the recovery key pairs are needed for encryption of the FEK
in the DRF. These public recovery keys are required to be present at all times on an
EFS system for normal file system operations. They are present in EDRA policy as
X509 version 3 “File Recovery” certificates. Recovery itself is expected to be a rare
operation required only when users leave organizations or lose keys. Because of
this, recovery agents can store the private portions of the keys safely elsewhere (on
smart cards and other secure storage devices).

EFS ARCHITECTURE

 Microsoft Windows 2000 Server White Paper 17

The following diagrams illustrate the encryption, decryption, and recovery
processes. The encryption process:

A quick brown fox
jumped...

File Encryption
(DES)

*#$fjda^j u539!3t
t389E *&...

Data Decryption
Field Generation

(RSA)

Data Recovery
Field Generation

(RSA)

Data
Decryption

Field

Data
Recovery

Field

Random
Number

Generator

User's
Public

Key

Randomly
Generated File
Encryption Key K K

Recovery
Public Key

K

The user’s plaintext file is encrypted using a randomly generated FEK. This file
encryption key is stored along with the file, encrypted under a user’s public key in
the DDF and encrypted under the recovery agent’s public key in the DRF.

NOTE: The figure shows only one user and one recovery agentthis can actually
be a list of users and a list of recovery agents with independent keys.

The decryption process:

A quick brown fox
jumped...

File Decryption
(DES)

*#$fjda^j u539!3t
t389E *&...

Data Decryption
Field Extraction

(RSA)

Data
Decryption

Field

User's
Private

Key

File
Encryption

Key

K

K

A user’s private key is used to decrypt the FEK using the corresponding encrypted
FEK item in the DDF. The FEK is used to decrypt file data reads on a block by block
basis. Random access to a large file will decrypt only the specific blocks read from
disk for that file. The entire file does not have to be decrypted.

Microsoft Windows 2000 Server White Paper 18

The recovery process:

A quick brown fox
jumped...

File Decryption
(DES)

*#$fjda ĵ u539!3t
t389E *&...

Data Recovery
Field Extraction

(RSA)

Data
Recovery

Field

Recovery
Agent's
Private

Key

File
Encryption

Key

K

K

The process is similar to decryption except that it uses the recovery agent’s private
key to decrypt the FEK in the DRF. This simple scheme provides a strong
encryption technology and the ability to let multiple users share an encrypted file, as
well as allowing multiple recovery agents the ability to recover the file if so required.
The scheme is fully algorithm agile and any cryptography algorithms can be used
for various encryption phases. This will be very important as new and better
algorithms are invented.

Implementation
EFS architecture is shown in the figure below.

Win32 Layer

NTFS

User Mode

Kernel Mode I/O Manager

EFS Driver

FSRTL Callouts

Hard Drive

CryptoAPI

EFS
Service

Applications

LPC Communication
for all Key Management

Support

 Microsoft Windows 2000 Server White Paper 19

EFS consists of the following components in the Windows 2000 operating system:

EFS driver. The EFS driver is logically layered on top of NTFS. It communicates
with EFS service (running as part of security subsystem) to request file encryption
keys, DDFs, DRFs, and other key management services. It passes this information
to the EFS file system run-time library (FSRTL) to perform various file system
operations (open, read, write, and append) transparently.

EFS FSRTL. File System Run Time Library (FSRTL) is a module within the EFS
driver that implements NTFS call-outs to handle various file system operations such
as reads, writes, and opens on encrypted files and directories as well as operations
to encrypt, decrypt, and recover file data when it is written to or read from disk.
Even though, the EFS driver and FSRTL are implemented as a single component,
they never communicate directly. They use the NTFS file control callout mechanism
to pass messages to each other. This ensures that NTFS participates in all file
operations. The operations implemented using the file control mechanisms include
writing the EFS attribute data (DDF and DRF) as file attributes and communicating
the FEK computed in the EFS service to FSRTL such that it can be set up in the
open file context. This file context is then used for transparent encryption and
decryption on writes and reads of file data from disk.

EFS service. The EFS service is part of the security subsystem. It uses the existing
LPC communication port between the Local Security Authority (LSA) and the
kernel-mode security reference monitor to communicate with the EFS driver. In user
mode it interfaces with CryptoAPI to provide file encryption keys and generate
DDFs and DRFs. The EFS service also provides support for Win32® APIs, which
are programming interfaces for encryption, decryption, recovery, backup and
restore. These Win32 APIs support remote encryption, decryption, backup and
restore operations

Win32 APIs. These provide programming interfaces for encrypting plaintext files,
decrypting or recovering plaintext files, and importing and exporting encrypted files
(without decrypting them first). These APIs are supported in a standard system DLL,
advapi32.dll.

Policy Enforcement
Even though the bas ic technology behind EFS is straightforward as explained by
previous sections, its policy infrastructure is not. The technology provides several
policy driven services to ensure security, assurance, reliability and ease of use.

Polices include:

Recovery Policy Enforcement
Encrypted Data Recovery Policy consists of zero or more X509 version 3
certificates. The Key Usage of these certificates must be “File Recovery”. The
private keys corresponding to these certificates are held by individuals who are
issued the certificates. These individuals are referred to as “Recovery Agents”.

Microsoft Windows 2000 Server White Paper 20

A recovery policy can be enforced at any of the following scopes of influence:

• Domain
• Organizational Unit
• Individual Computer
At each scope, the policy applies to all computers in that scope. For example, a
recovery policy configured at a particular OU applies to all computers under that
OU.

NOTE: Policy applies to computers and not users. The encrypted data is stored on
computers irrespective of who encrypted it—therefore recovery agents are based
on organization of the computer and not users.

By default, a recovery policy will be configured at the domain, so it applies to all
computers in an Active Directory -based Windows 2000 domain. The domain
“administrator” account is the default recovery agent. Similarly, a default policy is
configured at the computer that is not joined to the domain. The local “administrator”
account is the default recovery agent.

A policy with zero recovery certificates turns off EFS on computers under the
corresponding policy. Note that zero recovery certificates policy is distinct from no
policy, where no policy implies “don’t care” and is therefore interpreted as that each
computer can have a locally defined policy.

A recovery policy with any invalid certificate is considered invalid as a whole and
EFS is turned off for any new encryption. Note that existing encrypted files can still
be decrypted. An invalid certificate is based on policy described next.

EFS also does policy enforcement each time encrypted file is opened. The existing
recovery information is checked to ensure that it is based on current policy. If it is
not, new recovery information is generated for the file. This keeps the recovery
information on all active files up-to-date. To perform recovery, one can query the
information about recovery agents and provide the file to any one of them to
perform recovery.

Certificate Validity Enforcement
All certificates, recovery or user, are checked for validity when used. A valid
certificate is one that is:

• Not expired.
• Not revoked.
• Has correct key usage
• Where certificate chain evaluation results in a trusted root certificate and each

intermediary certificate authority certificate is trusted to issue certificates with
appropriate key usage.

The only exception to this validity rule is a self-signed certificate. Self-signed
certificates are accepted as valid as long as they have not expired.

Recovery policy is valid only if all recovery certificates are valid. Encrypting files is
only allowed if user has a valid EFS certificate. EFS provides a transparent, zero-

 Microsoft Windows 2000 Server White Paper 21

administration usage to end users. This is accomplished by automatically renewing
certificates for users. In a corporate environment, EFS will use a configured
Certificate Authority to obtain a certificate. If there is no CA configured, a self signed
certificate will be generated and used.

Similar to how recovery information is re-generated if it is invalid or not current, user
information is also re-generated if user’s certificate is invalid or is changed for any
reason. This ensures that frequently used files are always current with respect to
encryption information.

Security Considerations
Encrypting File System is a strong security technology for physical protection of
stored data. To that end, it is necessary to look at its various features and do a
security analysis. In this section we look at various threats and how EFS handles
them:

• Attempt to open other users’ encrypted files—EFS is designed to be
transparent under the normal mode of operation. When a user attempts to open
a file encrypted by another user, EFS attempts to locate the private key which
will decrypt the FEK during the open. Since the calling user will not possess the
key, FEK will not get decrypted and hence the attempt will failed with “Access
Denied”.

• Attempt to bypass recovery policy—EFS does not allow any new encryption of
files/folders if there is no recovery policy. If the machine is joined to a domain,
the EFS policy is propagated from the domain as part of Group Policy and
enforced by EFS on the machine. A local administrator’s attempt to define a
local EFS policy also does not work because policy from the domain takes
precedence. The only option for a local administrator on the machine would be
to remove the machine from the domain—doing so will no longer allow users to
logon to the machine using domain credentials

• Attempt to destroy recovery policy—A local administrator may attempt to locate
the EFS policy storage and attempt to delete or replace it. Deletion will not help
because that will disable EFS. Replacing EFS with another recovery policy will
not work because it will soon be overwritten by policy from domain.

• Physically access to the media—An individual with physical access to the
machine could potentially attempt sophisticated attacks by going to the disk
directly. Attempts to read the data this way will fail because it is encrypted and
a successful process would require implementing EFS itself. Another possible
attack with physical access can be to invalidate or delete the recovery portion
on the encrypted file. This will not still not work because EFS will automatically
recreate the recovery information when the file is successfully opened next
time.

• Recovery from fatal failures during encryption/decryption operations—EFS also
incorporates a crash recovery scheme whereby no data is lost in the event of a
fatal error such as system crash, disk full, or hardware failure. This is
accomplished by creating a plaintext backup of the original file being encrypted

Microsoft Windows 2000 Server White Paper 22

or decrypted. Once the original is successfully encrypted or decrypted, the
backup is deleted. OTE: Creating a plaintext copy hasthe side-effect that the
plaintext version of the file may exist on the disk, until those disk blocks are
used by NTFS for some other file. For this reason, it is recommended that it is
always better to start by creating an empty encrypted folder and creating files
directly in that folder. Doing so, ensures that plaintext bits of that file never get
saved anywhere on the disk. It also has a better performance as EFS does not
need to create a backup and then delete the backup, etc.

• Handling recovery policy changes —As discussed above, a user with physical
access to the machine may attempt to scramble the recovery information on the
file. It is also possible that recovery policy is changed by administrators at the
domain because of various reasons such as the expiration of certificates,
change of recovery agent, and so forth. When a particular encrypted file is
opened, EFS will check whether the recovery information on the file is current.
If not, it is recomputed. This is because recovery information for the file can not
be updated without a decrypted FEK which becomes available only when the
file is opened. Encrypted files that are not touched for long periods of time may
have stale recovery policy, it is therefore very important that recovery
certificates and private keys be maintained for several years even after the
recovery policy has changed.

• Handling user certificate or key changes —Just like the recovery policy
changes, user certificate or key changes are handled when a particular file is
opened. EFS determines if the key used to open the file is current. If not, the
data decryption field is updated on the file using the user’s current key. Note,
that recovery agents should also continue to hold on to there old keys unless
they are sure that all encrypted files have started using the new key. However,
users can be more relaxed than because users can depend on recovery agents
to decrypt their data in case they lose or destroy keys.

• Protecting the system from becoming unbootable—Another important piece to
understand is that EFS is intended to encrypt or decrypt user data. System data
such as the registry, system DLLs and other files needed during system boot
up must never be encrypted because EFS doesn’t become active until the
operating system is running. Therefore, if any of the files used by the operating
system are encrypted, the system will be rendered useless. EFS provides some
level of protec tion by disallowing encryption of files or folders with system
attribute designations.

Application Programming Interfaces
EFS provides the following API set to expose its features. These APIs are used by
various tools like Explorer, Cipher, NTBackup, EDRP Policy snap-in that expose
EFS capabilities to end users and administrators.

EncryptFile
BOOL
EncryptFile(
 LPCTSTR lpFileName
);

 Microsoft Windows 2000 Server White Paper 23

EncryptFile encrypts a plaintext file represented by lpFileName. The file may be
local or remote.

DecryptFile

BOOL
DecryptFile(
 LPCTSTR lpFileName,
 DWORD dwReserved
);

DecryptFile decrypts an encrypted file represented by lpFileName. The file may be
local or remote.

FileEncryptionStatus
BOOL
FileEncryptionStatus(
 LPCTSTR lpFileName,
 LPDWORD lpStatus
);

FileEncryptionStatus returns TRUE if the file is encryptable. A file is not encryptable
if it is not on the NTFS version 5 file system, if it is marked System, and so forth.

QueryUsersOnEncryptedFile
DWORD
QueryUsersOnEncryptedFile(
 IN LPCTSTR lpFileName,
 OUT PENCRYPTION_CERTIFICATE_HASH_LIST *

 pUsers
);

QueryUsersOnEncryptedFile returns the information on the list of users who can
decrypt the file represented by lpFileName. The information returned contains a
security identifier (SID) of users (if available), user’s name from the certificate that
was used and a thumbprint of the certificate.

QueryRecoveryAgentsOnEncryptedFile
DWORD
QueryRecoveryAgentsOnEncryptedFile(
 IN LPCTSTR lpFileName,
 OUT PENCRYPTION_CERTIFICATE_HASH_LIST *

 pRecoveryAgents
);

QueryRecoveryAgentsOnEncryptedFile returns the information on the list of
recovery agents who can recover the encrypted file represented by lpFileName. The
information returned contains a SID of recovery agents (if available), their names
from the certificates and the thumbprint of the certificates.

RemoveUsersFromEncryptedFile
DWORD
RemoveUsersFromEncryptedFile(
 IN LPCTSTR lpFileName,
 IN PENCRYPTION_CERTIFICATE_HASH_LIST

 pHashes
);

RemoveUsersFromEncryptedFile allows the caller to remove one or more users
from the list of users who can decrypt the file. The caller must be able to decrypt the
file in order to successfully perform this operation.

Microsoft Windows 2000 Server White Paper 24

AddUsersToEncryptedFile
DWORD
WINAPI
AddUsersToEncryptedFile(
 IN LPCTSTR lpFileName,
 IN PENCRYPTION_CERTIFICATE_LIST pUsers
);

AddUsersToEncryptedFile allows the caller to add one or more users to the list of
users who can decrypt the file.

SetUserFileEncryptionKey
DWORD
SetUserFileEncryptionKey(
 IN PENCRYPTION_CERTIFICATE

pEncryptionCertificate
);

SetUserFileEncryptionKey allows the user to change the certificate or private key
that is used by EFS to encrypt new files or update existing files. Normally, EFS
automatically handles cases where user doesn’t have a key setup or if the
certificate is expired. This is done by transparently generating a key pair for the user
and getting it certified. In certain cases, such as compromise of a key or if it is lost,
user may want to change their key.

FreeEncryptionCertificateHashList
VOID
FreeEncryptionCertificateHashList(
 IN PENCRYPTION_CERTIFICATE_HASH_LIST pHashes
);

FreeEncryptionCerttificateHashList allows the caller to free memory allocated during
the Query APIs.

In addition to the basic APIs described above, EFS also provides four APIs for
backup/restore purposes . These APIs are for the Windows 2000 Release ONLY.
Applications that use them will need to handle the rewrite for subsequent releases
where these APIs will be encapsulated into the planned comprehensive backup and
restore APIs.

OpenRaw
DWORD
OpenRawW(
 LPCTSTR lpFileName,
 ULONG ulFlags,
 PVOID * pvContext
);

EFS provides fortransparent normal file operations like open, read, write. Therefore,
in order to support the capability where the file may be opened to read encrypted
bits for back up purposes, this new open API is provided. Because backup
operators are not expected to possess private keys to decrypt every file, it is
important that they be able to back up files in encrypted form itself. OpenRaw allows
backup operators to open the file in this special mode and setup a context for
subsequent APIs.

ReadRaw
typedef
DWORD
(*PFE_EXPORT_FUNC)(
 PBYTE pbData,

 Microsoft Windows 2000 Server White Paper 25

 PVOID pvCallbackContext,
 ULONG ulLength
);
DWORD
ReadRaw(
 PFE_EXPORT_FUNC pfExportCallback,
 PVOID pvCallbackContext,
 PVOID pvContext
);

ReadRaw allows the caller to read all the encrypted streams on the opened file
(using OpenRaw) in an opaque format. The caller provides a export function which
is used by the API to return the opaque serialized data stream to the caller. This call
returns only when all data has been provided to the caller using the supplied export
function.

WriteRaw
typedef
DWORD
(*PFE_IMPORT_FUNC)(
 PBYTE pbData,
 PVOID pvCallbackContext,
 ULONG ulLength
);
DWORD
WriteRaw(
 PFE_IMPORT_FUNC pfImportCallback,
 PVOID pvCallbackContext,
 PVOID pvContext
);

WriteRaw allows the caller to write back all the opaque serialized data stream
created using an earlier call to ReadRaw to recreate the original file. The caller
provides an import function which is used by the API to obtain the opaque serialized
data stream to the caller and restore the original encrypted file. This call returns only
when entire file is restored or there is a failure. There may be multiple calls to the
import function from within this function.

CloseRaw
VOID
CloseRaw(
 PVOID pvContext
);

CloseRaw is the cleanup API that allows EFS to cleanup the context after the file
has been backed up or restored.

Microsoft Windows 2000 Server White Paper 26

EFS provides data recovery to authorized recovery agents. The data recovery
architecture is part of Microsoft's effort to meet current encryption export policy
regulations and provide stronger than 40-bit encryption to our international
customers. Towards this effort, EFS uses the standard DESX encryption algorithm,
which is based on a 128-bit encryption key. EFS is designed to support different
encryption algorithms with varying key strengths for future enhancement.

Currently, Microsoft is working with the United States government to get export
approval for EFS with 128-bit DES as the file encryption algorithm along with its
built-in recovery infrastructure. While the review process is going on, Microsoft will
make this functionality available to our international customers by using 40-bit keys
that are expanded to the required 128 bits for DESX, thereby meeting the export
restrictions of 40-bit key entropy. Windows 2000 products for the North American
market will use the full 128-bit DESX encryption. Files that are encrypted using the
40-bit version of EFS may be restored and used with EFS versions that support the
128-bit DESX. However, files encrypted using the 128-bit version of EFS will not be
restorable into EFS versions restricted to 40-bit DESX to ensure U.S. export
regulations are met. In the future, when the regulations allow export of stronger
cryptography, customers worldwide will be able to migrate transparently and use
new and stronger encryption algorithms with EFS.

EXPORT ISSUES WITH
EFS

 Microsoft Windows 2000 Server White Paper 27

• EFS in Windows 2000 provides users the ability to encrypt NTFS directories
using a strong public key-based cryptographic scheme whereby all files in the
directories are encrypted. Individual file encryption though supported, is not
recommended because of unexpected behavior of applications.

• EFS also supports encryption of remote files accessible via file shares. If users
have roaming profiles, the same key and certificate may be used on certain
trusted remote systems. On others, local profiles are created and local keys are
used.

• EFS provides enterprises the ability to set up data recovery policies such that
data encrypted using EFS can be recovered when required.

• The recovery policy is integrated with overall Windows 2000 Security policy.
Control of this policy may be delegated to individuals with recovery authority.
Different recovery policies may be configured for different parts of the
organization.

• Data recovery in EFS is a contained operation. It only discloses the recovered
data, not individual user’s key that was used to encrypt the file.

• File encryption using EFS does not require users to decrypt and re-encrypt the
file on every use. Decryption and encryption happens transparently on file
reads and writes to disk.

• EFS supports backup and restore of encrypted files without decryption.
NtBackup supports backup of encrypted files.

• EFS is integrated with the operating system such that it stops the leaking of key
information to page files and ensures that all copies of an encrypted file, even if
moved, are encrypted.

• The North American version of EFS will use DESX as the file encryption
algorithm with full 128-bit key entropy. The international vers ion of EFS will also
use DESX as the encryption algorithm, however the file encryption key will be
reduced to have only 40-bit key entropy.

• Several protections are in place to ensure that data recovery is possible and
there is no data loss in case of total system failures.

SUMMARY

Microsoft Windows 2000 Server White Paper 28

For the latest information on Windows 2000, visit our World Wide Web site at
http://www.microsoft.com/windows or the Windows 2000 Forum on the Microsoft
Network (GO WORD: MSNTS).

FOR MORE
INFORMATION

